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ABSTRACT

Optical coherence tomography angiography (OCTA) is a new device that provides noninvasive examination of the vascular structures 
in the optic disc, peripapillary area and macula. OCTA allows qualitative and quantitative examination of retinal vascular structures in 
layers and in three dimensions. It is now known that vascular damage progresses in both the peripapillary and macular superfi cial layers 
in patients with glaucoma as the disease stage progresses. This vascular damage is associated with structural tests in the early stages 
and functional tests in the late stages. Repeatability and reproducibility of OCTA is good, although it can be affected by subject-related, 
disease-related and eye-related factors. Recent studies have shown that OCTA can be used in the follow-up of progression in glaucoma 
patients.
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INTRODUCTION

Glaucoma is an optic neuropathy characterized by  
progressive loss of retinal ganglion cells (RGCs).1 Although 
its pathogenesis hasn't been fully elucidated, there are two 
major theories to explain loss of RGCs in glaucoma.2 
According to mechanical theory, RGC death is a result of 
elevated intraocular pressure (IOP). It has been proposed 
that elevated IOP blocks axoplasmic fl ow in RGCs within 
lamina cribrosa (LC). The neurotrophic growth factors are 
decreased, leading to RGC death.3 The elevated IOP is the 
most important risk factor for glaucoma. However, there 
are situations where glaucoma progression occurs despite 
low IOP.4 

The alternative theory is "vascular theory" to explain 
glaucoma pathogenesis. It is assumed that glaucoma is a 
consequence of decreased blood fl ow.5 The impaired ocular 
blood fl ow leads ischemia causing damage optic nerve.4 

Many techniques including fl uorescein angiography 
(FA),6 indocyanine green angiography (ICA),7 scanner 
laser ophthalmoscopy,8 laser Doppler fl owmetry9 and 
laser speckle fl owgraphy10 have been used to demonstrate 
changes in  blood fl ow. However, these methods have 

some limitation in defi ning retinal micro-vascular changes 
in glaucoma and have had little success in elucidating the 
vascular role in glaucoma.11 In addition, majority of these 
technologies failed to provide repeatable and quantitative 
measurements.12   

Optical coherence tomography angiography (OCTA) is a 
non-invasive imaging technique. It provides 3-dimensional 
images of optic nerve head (ONH) and retinal blood vessels 
in vivo. In addition, it ensures better evaluation of ocular 
blood fl ow and retinal micro-vascularity in glaucoma.13 
It  also allows qualitative and quantitative assessment of 
blood vessels. 

Currently, various OCTA devices from different 
manufacturers are used in the clinical practice. There are 
four different algorithms and devices for evaluation ocular 
micro-vascularity: split-spectrum amplitude-decorrelation 
angiography (SSADA) used in Optovue (RTVue XR 
Avanti; Optovue, Inc. Fremont, CA, US); OCT based 
micro-angiography OMAG) used in  Angioplex (Cirrus 
HD-5000; Zeiss Meditec, Dublin, CA, US); OCTA ratio 
analysis (OCTARA; swept-source OCT, Topcon, Japan) 
used in  Topcon DRI OCT Triton; and  full spectrum 
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superfi cial retinal layer extends from 3 μm below the 
ILM to 15 μm below the inner plexiform layer (IPL).16  In 
glaucomatous eyes, vascular changes are more prominent 
in superfi cial retinal layers when compared to deep retinal 
layers.18 In recent years, changes in deep retinal layers have 
also been examined; however, the diagnostic capacity was 
found to be better for superfi cial macular vascular structure 
then deep layers regardless of glaucoma stage.19

The OCTA quantitatively assess ocular circulation using 
2 parameters: fl ow index and vascular density (VD). The 
fl ow index is defi ned as mean decorrelation value in the 
region of interest. The vascular density is more commonly 
used when evaluating OCTA data. The VD is defi ned as the 
percentage area occupied by vessels in the measured area.20 
In most devices, VD is calculated by device software in 
automated manner. However, VD measurements can vary 
among different devices due to different algorithms and 
segmentation techniques  even among healthy individuals. 
The OCTA measurements cannot be used interchangeably.21 

REPEATABILITY AND REPRODUCIBILITY 

Intra-visit repeatability and inter-visit reproducibility 
of OCTA have been evaluated in both peripapillary 
and superfi cial macular layers and OCTA had good 
repeatability and reproducibility. In studies using  RTVue 
XR spectral-domain OCT, it was shown that intra-visit 

amplitude decorrelation angiography (FS-ADA) used 
in Spectralis OCT2 module (Heidelberg Engineering, 
Germany).14

Available OCTA devices can scan optic disc region and 
macula. Optic disc is generally scanned using volumetric 
scans involving a fi eld of 4.5x4.5 mm2 centered around 
optic disc (Figure 1). Optic disc scans are divided into 
quadrants for further analysis. The two sections found 
to be helpful in the glaucoma are radial peripapillary 
capillary (RPC) that defi nes the vessels within the retinal 
nerve fi ber layer (RNFL) layer and choriocapillaris section 
that defi nes choroidal vessels within parapapillary region.

RPC layer extends to posterior margin of RNFL through 
inner limiting membrane (ILM). In glaucomatous eyes, 
reduced vascularity is observed in RPC.15 Choroidal section 
is used to assess deep retinal and choroidal structures. In 
RTVue-XR SD-OCT, choroidal section begins from 75 μm 
under retinal pigment epithelium;16 however, it may vary 
in different devices.

Macular OCTA scan is generally performed using a 
volumetric scan involving a fi eld of  3×3 mm2 or 6×6 mm2 
(Figure 2).  The scans of 6×6 mm2 (Figure 3) detect better 
glau comatous changes compared to scans of 3×3 mm2.17 
The macular assessment can be performed in superfi cial 
and deep retinal layers.  In RTVue-XR SD-OCT device, 

Figure 1: Peripapillary OCTA image in a healthy individual.
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Figure 2: Macular OCTA image in a healthy individual.

Figure 3: Peripheral vascular damage are seen in OCTA image (6x6 mm2) in a patient with early glaucoma.



174 Optical Coherence Tomography Angiography in Glaucoma

glaucoma, area outside of 3x3 mm2 but inside of 6x6 mm2 
is more vulnerable to injury.27 Thus, AUC value can be 
lower in studies using macular area of 3x3 mm2 while it 
can be higher in studies using macular area of  6x6 mm2. In 
other words, measurements using macular area of 6x6mm2 

have higher diagnostic value than those using 3x3mm2.18 
In addition, OCTA measurements and OCT thickness 
measurements may not be overlap directly when macular 
area of  3x3 mm2 is used.31 In addition, test-retest variability 
was found to be lower in measurements using macular area 
of  3x3mm2.32 As a result, macular measurements using the 
area of 6x6mm2 is recommended in glaucoma. As similar 
to peripapillary region, macular superfi cial VD has higher 
AUC value than GCC in discrimination between suspected 
glaucoma and healthy eyes.31 

In most studies, AUC values of optic disc OCTA parameters 
were found to be lower than OCT parameters.33, 34 This is 
due to individual variation of optic disc morphology. This 
leads to lower discriminative power of optic disc OCTA 
parameters in glaucoma. Another reason is challenges in 
identifi cation of micro-vascularity due to presence of great 
vessels over optic disc.35 

In conclusion, discriminative power for distinguishing 
glaucomatous eyes from healthy eyes is comparable 
between OCTA and OCT. The diagnostic capability of 
OCTA increases by progression of glaucoma.28, 34 There 
are various results in studies using different devices due 
to differences in segmentation methods across devices. 
However, combined use of OCTA and OCT improves 
diagnostic value when compared to individual use of these 
modalities.36 

In recent studies, it was shown that VD was decreased 
by increasing severity of glaucoma.18, 37, 38 Also recently, 
there are studies on deep retinal microvascular drop-out 
(MvD) in patients with glaucoma. This denotes complete 
loss of choriocapillaris at the area of parapapillary atrophy 
(PPA).39, 40 It was also shown that such drop-outs are true 
perfusion defect by ICA.41

CORRELATION OF OCTA MEASUREMENTS 
WITH VISUAL FIELD AND OCT MEASUREMENTS

The OCTA measurements are correlated with visual fi eld 
(VF) and OCT measurements. This relationship is not linear 
but it was found to be stronger than linear relationship.42, 43 
In addition, the correlation of VF parameters with OCTA 
measurement seems to be stronger than those with OCT 
measurements in glaucomatous eyes with high myopia44 
and in eyes with advanced glaucoma.45,46 It has been 
reported that base effect is less in OCTA when compared 
to OCT.47 Moreover, it seems that there is no detectable 
base effect for macular VD measurements. Given these 

coeffi cient of variation (CV) ranged from 2.4% to 6.6%.22 
In healthy and glaucomatous eyes, repeatability coeffi cient  
ranged from 3.3% to 7.1% for macular and peripapillary 
OCTA parameters.22 That is, the variability in peripapillary 
or parafoveal VD is less than 5% to 7%. It is clinically 
insignifi cant as test-retest variability.14 

Intra-visit repeatability was found to be similar in healthy 
and glaucomatous eyes.22-24 Based on global measurements, 
repeatability is poorer in peripapillary sectors. For OCTA 
measurements, signal power index values were found to be 
positively correlated with intra-visit repeatability.22

Inter-visit CV has been reported as 3.2-9.0% for macular 
and peripapillary OCTA parameters.23, 24 As similar to 
repeatability, reproducibility was poorer in peripapillary 
sectors; in addition, it was also poorer in glaucomatous 
eyes than healthy eyes.23 

It was observed that there are difference across 
measurements when repeatability of peripapillary 
measurements was assessed between OCTA devices. Again, 
OCTA measurements cannot be used interchangeably 
among the different devices.21

In a study comparing CVs of peripapillary and macular 
optical coherence tomography (OCT) ad OCTA, the CV 
was lower in OCT than OCTA.23 In other words, OCTA 
repeatability is poorer than OCT. Mean intra-visit and 
inter-visit CV was found to be 4.0% for macular and 
peripapillary OCTA while it was 1.% for  RNFL and 
ganglion cell complex (GCC), indicating a signifi cant 
difference. This variability should be kept in mind in the 
follow-up of glaucoma progression.23

DIAGNOSTIC CAPACITY OF OCTA IN PRIMARY 
OPEN-ANGLE GLAUCOMA 

In previous studies, area under curve (AUC) was found to 
be high for peripapillary region in patients with glaucoma 
(>0.85 for both OCTA and OCT).25-29 The asymmetrical 
VD measurements can be helpful in discrimination 
between suspected glaucoma and healthy eyes in early 
glaucoma; it provided higher AUC value when compared 
to asymmetrical RNFL thickness.30

There are contradictory results in studies on diagnostic 
performance of macular superfi cial OCTA parameters. 
High AUC values were reported for whole-image macular 
superfi cial VD in some studies while medium values were 
reported in others.18, 29 In some studies, it was found that 
diagnostic value of GCC was found to be higher when 
compared to macular superfi cial VD.31, 32 This variation 
may be due to use of different area (3x3 mm2 and 6x6 
mm2) for macular measurements in different studies.  In 
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FACTORS INFLUENCING ON OCTA 
MEASUREMENTS

Many disease-, patient-and eye-dependent factors may 
affect peripapillary and macular VD measurements. 
In clinical practice, these factors must be taken into 
consideration when analyzing OCTA data. 

Disease-dependent Factors

The variability in VD has been defi ned in different 
subgroup of patients with POAG. The eyes with POAG 
are not homogeneous regarding VD even in patients with 
similar stage. In addition, ocular characteristics of eyes 
with glaucoma can affect VD. The vascular damage on 
OCTA is increased by increasing functional and structural 
disease severity in glaucoma (Figure 4, 5).18, 25 

The localization of global and local OCTA parameters are 
associated to VF parameters. Both peripapillary and macular 
VD were found to be associated with VF defects.31,43,53,54 

fi ndings, OCTA can play an important role in the follow-
up glaucoma progression in advanced disease.47

In some studies, it was reported that there is a 
topographic relationship between localization of MvD 
and morphological parameters (RNFL thinning and LC 
defects) or functional parameters (VF loss) in eyes with 
POAG.39, 48, 49

In studies on eyes with perimetric glaucoma and VF defect 
limited to hemi-fi eld, OCTA changes were evaluated 
in areas corresponding to healthy hemi-fi eld. In these 
studies, it was found that peripapillary VD and RNFL 
thickness were decreased in the hemi-retina corresponding 
to perimetrically intact hemi-fi eld when compared to 
healthy eyes.50, 51 In a recent study on eyes with POAG 
and VF defect limited to hemi-fi eld, it was shown that 
RNFL thickness and ganglion cell analysis (GCA) value 
were markedly low in the hemi-retina corresponding to 
perimetrically intact hemi-fi eld in eyes with MvD when 
compared to those without.52

Figure 4: Peripapillary OCTA image in patients with early (left) and advanced glaucoma (right). Marked decrease is seen 
in peripapillary vascularity in OCTA image (right).

Figure 5: Macular OCTA image in patients with early (left) and advanced glaucoma (right). Vascular loss is present at 
inferior hemi-fi eld in a patients with early glaucoma (left) while marked decrease is seen in macular superfi cial vessels in 
OCTA image (right). 
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European descent, it was found that VD measurements 
were lower in individuals from European descent.50, 69

Diurnal variation

There is minimal, clinically irrelevant diurnal variation in 
OCTA measurements.70 

Exercise and Systemic Diseases

The patient should have rest before OCTA examination 
since increased physical activity can lead alteration 
of perfusion in optic nerve and macula.71 In addition, 
systemic blood pressure and diabetes mellitus can also 
affect OCTA.72 

It was found that peripapillary VD was lower while 
macular VD was higher in hypertensive patients without 
retinopathy. Again, VD was lower in diabetic patients 
without retinopathy.72 The decline in VD was correlated 
with duration diabetes mellitus.73 In another study on 
diurnal variation, it was found that superfi cial macular and 
peripapillary VD was negatively correlated with heart rate 
while they were positively correlated with mean arterial 
pressure.74 

Treatment

Topical β-blockers have infl uence on VD measurements.18 
It was reported that topical ß-blocker administration led 
3.3% lower superfi cial macular VD when compared to 
alpha-agonists and carbonic anhydrase inhibitors.18 

Eye-dependent Factors

Myopia

In studies comparing eyes with high myopia and 
emmetropic eyes, it was seen that VD measurements 
were lower in peripapillary region although there was no 
difference in macular region.75 The peripapillary VD were 
lower in myopic eyes when compared to normal population 
while it was further declined in glaucomatous eyes with 
myopia.76 In myopic eyes, one reason for lower VD values 
may be magnifi er effect in quantitative measurement of 
retinal vascular network.77 It was found that the relationship 
between regional VF and peripapillary VD was stronger 
than the relationship with RNFL thickness in POAG eyes 
with high myopia.44 

Optic Disc Area

Optic disc area has no effect on VD measurements.72  

Signal intensity

In many studies on OCTA, it was shown that low signal 
intensity is associated with low OCTA measurements. 

Again, it was found that the width of foveal avascular 
zone was associated with central VF defect.55 In particular, 
there is a strong correlation between superotemporal 
and inferotemporal peripapillary VD and corresponding 
VF sectors.43, 53 There are many studies reported that the 
relationship between thickness and function is stronger 
than those between vascularity and function .29, 38, 42, 53 

OCTA may be valuable in the follow-up of the patients with 
suspected glaucoma. Vascular injury can be detected even 
before presence of marked reduction in RNFL thickness in 
eyes with ganglion cell damage.56 Reduction in structural 
parameters is directly related to VD decline.26, 56, 57 In eyes 
with early, preperimetric open-angle glaucoma, it was 
shown that RNFL defects are correlated with localized 
peripapillary VD decline in terms of localization.57

The MvD prevalence and extent are increased by increasing 
disease severity. The MvD is more prominent in patients 
with VF defect at parafoveal region.58-60 

In studies on patients with similar VF defects, it was shown 
that the extent of peripapillary VD decline was higher in 
patients with focal LC defect.61 The decline in VD was 
correlated with localization at the side with LC defect.61 
However, no signifi cant difference was found regarding 
macular VD in eyes with and without LC defect which 
showed similar glaucoma severity.62 In addition, presence 
of MvD was found to be associated with LC defects.39, 63 

In a study comparing POAG patients with and without disc 
hemorrhage, inferotemporal peripapillary VD was found 
to be lower in patients with disc hemorrhage.14 The MvD is 
associated with disc hemorrhage. The MvD prevalence is 
higher in POAG patients with disc hemorrhage than those 
without.58, 64 

In addition, presence of secondary etiology for glaucoma 
such as pseudoexfoliation (PEX) also affects peripapillary 
and macular VD values. The extend of decline in 
peripapillary VD is higher in PEX glaucoma than POAG. 
Similarly, there is a decline in peripapillary VD in eyes 
with PEX when compared to healthy population.65 In the 
study we conducted in our clinic, a decrease in macular 
superfi cial VD was shown in eyes with PEX, which are 
structurally similar to healthy individuals.66 

Patient-dependent Factors

Demographics

In previous studies, it has been shown that both peripapillary 
and macular VD are decreased by advancing age and the 
extent of the decrease is greater in male gender.11, 67, 68 In 
a study comparing glaucomatous eyes from African and 
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RNFL and VF progression, particularly with central VF 
defect.64, 86-88 In a recent study, it was found that MvD is 
more closely related with glaucoma progression if it is 
adjacent to optic disc margin.89 

Above-mentioned studies suggest that peripapillary and 
macular VD can provide important, additional information 
regarding glaucoma progression. One of these factors 
can be that the decreased optic disc and retinal perfusion  
might have led to accelerated retinal ganglion cell death. 
Again, decreased perfusion in OCTA can be a biomarker 
for dysfunctional retinal ganglion cells which are viable 
and have decreased metabolic demands.14 Future studies 
comparing OCTA parameters with structural and functional 
parameters will better elucidate role of OCTA in the follow-
up of glaucoma progression. 

LIMITATIONS OF OCTA  

The acquisition of OCTA images is a time-consuming 
procedure; thus, motion artifacts during procedure are 
common in OCTA imaging. To overcome poor scan 
quality, real-time eye-tracking technology and high-
defi nition scanning mode are two recent improvements to 
control motion artifacts more effectively.90 In the future, 
shortening acquisition time can improve image quality.

Medium opacity such as cataract or dry eye also impair scan 
quality, resulting in lower VD. Pupil dilatation enhances 
signal intensity and can allows better scan quality.

The OCTA technologies cannot deeper tissues  at quality 
level comparable to those achieved in superfi cial layers. 
This is due to projection of signals from superfi cial retinal 
vessels to deep layers, resulting in projection artifacts.13 It is 
thought  that future technologies will allow better evaluation 
of deep retinal layers and choroidal vascularity.91, 92 

Another important issue is that normal anatomic variation 
or pathological changes in retinal layers may lead 
segmentation errors. This should be taken into account 
when analyzing OCTA data.

CONCLUSION

The OCTA is still a novel, non-invasive modality that allows 
monitoring vascular changes during glaucomatous process 
by providing 3-dimensional images of retinal vascular 
layers. Monitoring vascular changes will be benefi cial in 
the follow-up of glaucoma progression and contribute our 
understanding about vascular etiopathogenesis. In order 
to detect early diagnosis and progression in patients with 
early glaucoma, additional examination methods may be 
needed when there is doubt in structural tests. Again, a base 

Presumably, the software cannot clearly discriminate static 
structures from blood vessels at low signal intensities. 
In clinical practice, signal intensity should be taken into 
consideration when analyzing OCTA data.11, 72 

Intraocular Pressure

In some studies, it was shown that peripapillary VD values, 
measured as low initially, were higher after reduction 
of IOP with treatment.78, 79 However, there are  studies 
reporting that IOP reduction did not alter DD values.80, 81

MONITORING GLAUCOMA PROGRESSION AND 
RISK IDENTIFICATION USING OCTA 

Although there is no long-term studies using OCTA, 
promising results have been reported regarding follow-up 
for glaucoma progression with VD monitorization.68, 11, 82 
However, it should kept in mind that VD can be affected 
by systemic perfusion, retinal oxygenation or hypercapnia 
when monitoring glaucoma progression using OCTA.

In a study including 2-years of follow-up in 20 patients with 
OHT and 24 patients with glaucoma, Holló et al. reported 
found a signifi cant negative slope in RNFL thickness in 
one-third of patients but no decline in peripapillary VD.83 In 
another study, same author reported negative slope in 17% 
of patients by removing great retinal vessels via software.78 
This decline in peripapillary VD was compatible with 
progression in corresponding RNFL region. 

In a recent study, Shin et al. evaluated relationship between 
peripapillary VD, RNFL thickness and VF in 159 patients 
with varying stages of POAG over 2.66 years. Authors found 
that longitudinal peripapillary VD loss was associated with 
progressive VF loss regardless of glaucoma stage.84 

The identifi cation of patients at high risk for glaucoma 
development and progression is highly important in the 
management of glaucoma. The known risk factors include 
age, IOP, optic disc hemorrhage and decreased central 
corneal thickness. 

In a follow-up study in patients with mild and moderate 
glaucoma, it was found that lower baseline macular 
and peripapillary VD is associated with faster RNFL 
progression.68 Although follow-up duration was 2 years in 
the study, authors suggested the relationship is independent 
from baseline RNFL thickness and that OCTA can be used 
to predict risk for glaucoma progression. 

In OCTA studies, it was reported that MvD can be used 
in the follow-up of progression and risk analysis.85 The 
presence of MvD is associated with rapid thinning in 
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effect is present in structural tests in advanced glaucoma 
and additional testing together with visual fi eld testing will 
be helpful. OCTA will be more benefi cial by introduction 
of devices allowing rapid acquisition, decreased motion 
artifacts, less affected by media opacities and better 
assessment of deep tissues. Further long-term studies will 
clarify whether OCTA detects vascular changes earlier 
than structural tests and its role in the follow-up glaucoma 
progression. 
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